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7.1 FIBERS AND PERSISTENCE

Let f : K → R+ be a function that assigns a non-negative
real number f (σ) to every simplex σ of a simplicial complex
K. We call f monotone if it satisfies f (σ) ≤ f (τ) whenever
σ is a face of τ in K. Specifying a monotone f is equivalent
to imposing an R+-indexed filtration F• on K — to discover
this filtration, one uses the rule FtK = {σ ∈ K | f (σ) ≤ t}.
We call F the sublevelset filtration of K with respect to f .
Conversely, if we are given a filtration F• of K, then the cor-
responding monotone function f : K → R+ is given by
f (σ) = inf {t ∈ R+ | σ ∈ FtK}. Thus, much of persistent ho-
mology (particularly its application to the study of filtered
simplicial complexes) can be interpreted as the systematic analysis of homology groups associ-
ated to certain fibers of f — for each t ∈ R+, the fiber of interest is a subcomplex of K:

{ f ≤ t} := {σ ∈ K | 0 ≤ f (σ) ≤ t}
Thanks to the finiteness of K, taking the k-th homology of sublevelset filtrations always pro-

duces tame persistence modules (in the sense of Definition 6.13); thus these modules admit a
barcode decomposition as guaranteed by Corollary 6.14. These barcodes satisfy two special
properties: first, they allow us to combinatorially describe the homology of each fiber { f ≤ t}
and the rank of the linear maps

Hk
(
{ f ≤ t}

)
→ Hk

(
{ f ≤ s}

)
induced on k-th homology by inclusion of fibers for all pairs t ≤ s. Second, if we have a another
monotone function f ′ : K → R that is ε-close to our f , i.e., if we have

| f (σ)− f ′(σ)| < ε for every σ in K,

then the barcodes for f ′ will be no more than ε-apart from those of f with respect to the bot-
tleneck distance (see Definition 6.18 and Exercise 7.1). Thus, all intervals longer than 2ε in the
barcode of f correspond to fiber homology classes that are stable with respect to ε-perturbations
of f .

Card-carrying mathematicians will immediately wonder whether similar stability results can
be obtained for maps K → X when X is more complicated than R+: ars gratia artis. Those with
the ability to withstand this temptation to generalize might instead be compelled by more practi-
cal considerations. A monotone map f : K → R+ associates a (real-valued) measurement to each
simplex, and we are often interested in several such measurements { fi : K → R+ | 1 ≤ i ≤ n}
and wish to study (the homology of) their common sublevelsets

⋂n
i=1 { fi ≤ ti} simultaneously.

Thus, we may as well assign
σ 7→

(
f1(σ), . . . , fn(σ)

)
and study the fibers of this single vector-valued map K → Rn

+.
Even more interesting from a topological viewpoint is the scenario where the fi associate

angles in [0, 2π) to simplices; in this case, we have a map f : K → Tn to the n-torus (i.e., the
product of n circles). Now it no longer makes sense to seek monotonicity or ask about fibers of
the form { fi ≤ ti}, since there is no natural partial order on points of the n-torus. On the other
hand, we can certainly triangulate the torus so that f becomes a simplicial map and study the
fiberwise homology of f over simplices (or subcomplexes) of Tn. It is, therefore, in our interest
to understand the (co)homology groups of fibers of simplicial maps f : K → L. The optimal data
structure which coherently organizes these fiber homology groups is called a sheaf.
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7.2 SHEAVES

Let L be a simplicial complex and F a field. We write (L,≤) to denote the poset of simplices
in L ordered by the face relation.

DEFINITION 7.1. A sheaf over L is a functor S : (L,≤)→ VectF. In other words, S assigns
(1) to each simplex τ of L an F-vector space S (τ) called the stalk, and
(2) to each τ ≤ τ′ in L a linear map S (τ ≤ τ′) : S (τ)→ S (τ′) called the restriction map,

subject to the usual (identity and associativity) categorical axioms:
(1) for every simplex τ in L, the map S (τ ≤ τ) is the identity on S (τ), and
(2) for every triple τ ≤ τ′ ≤ τ′′ in L, we have S (τ′ ≤ τ′′) ◦S (τ ≤ τ′) = S (τ ≤ τ′′).

We call L the base space of the sheaf S . From a
purely algebraic perspective, S is an arrangement of
F-vector spaces and linear maps parametrized by the
simplices of L and their face relations. Alternately,
one may view S as a gadget which weights these
simplices and face relations by vector spaces and lin-
ear maps respectively. Although the stalks of a sheaf
can vary drastically from simplex to simplex, the as-
sociativity requirement places severe constraints on
restriction maps. For instance, both composite paths
from S (τ) to S (τ′′) in the accompanying figure
must evaluate to S (τ ≤ τ′′). On the other hand,
if L is one-dimensional then associativity holds automatically because there are no ascending
triples τ < τ′ < τ′′ of simplices.

EXAMPLE 7.2. Here are three examples of sheaves on a simplicial complex L, in increasing
order of complexity.

(1) The zero sheaf 0L, as suggested by its name, assigns the trivial (i.e., zero-dimensional)
F-vector space to every simplex. This forces all the restriction maps to also be zero.

(2) Given a simplex τ of L, the associated skyscraper sheaf Skτ over L assigns the triv-
ial vector space to every simplex except τ, whose stalk is the one-dimensional vector
space F. The restriction map associated to τ ≤ τ is the identity, while all other restric-
tion maps must be zero.

(3) The constant sheaf FL assigns the one-dimensional stalk F to every simplex of L and
the identity restriction map F→ F to every face relation in sight.

More interesting examples will become available later.

As mentioned in the previous Section, our main interest in sheaves comes from their remark-
able ability to encode the homology groups of fibers of simplicial maps. Recall from (2) that the
fiber of a simplicial map f : K → L under a simplex τ of L is the subcomplex of K given by

τ/ f = {σ ∈ K | f (σ) ≤ τ} .

And moreover, for any pair τ ≤ τ′ in L there is an obvious inclusion of fibers τ/ f ↪→ τ′/ f
because any σ in K satisfying f (σ) ≤ τ automatically satisfies f (σ) ≤ τ′. Thus, fitting the
homology groups Hk(τ/ f ; F) into a sheaf over L becomes a matter of invoking the functoriality
of homology with respect to inclusion maps.
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PROPOSITION 7.3. Let f : K → L be a simplicial map. For each dimension k ≥ 0, the assignments

τ 7→ Hk(τ/ f ), and

(τ ≤ τ′) 7→ Hk(τ/ f ↪→ τ′/ f )

constitute a sheaf over L, which we denote F k
f and call the k-th fiber homology sheaf of f .

The proof is not complicated — for any triple of simplices τ ≤ τ′ ≤ τ′′ in L, the inclusion
τ/ f ↪→ τ′′/ f factors through τ′/ f ; the identity and associativity axioms of Definition 7.1 are
satisfied simply because homology is functorial. It should also be noted that in general some
fiber τ/ f might be empty, in which case we would have F k

f (τ) = Hk(τ/ f ) = 0 for all k.

EXAMPLE 7.4. Fiber homology sheaves of the identity simplicial map id : L→ L are already
familiar to us — for each simplex τ of L, the fiber τ/id is the subcomplex τ consisting of the
single simplex τ along with all of its faces. Each such fiber is contractible by Proposition 2.6,
and hence has the homology of a point ∆(0). Consequently,

F k
id(τ) =

{
F k = 0
0 k 6= 0

Thus, F k
id is the zero sheaf 0L whenever k > 0. With a bit of effort, one can discover that the

restriction maps of F 0
id are all identities F→ F, and so F 0

id is the constant sheaf FL.

Those experiencing nostalgia for persistent homology have no cause for concern: every sheaf
S is filled to the brim with persistence modules. Take any ascending sequence

τ0 ≤ τ1 ≤ · · · ≤ τn

of simplices in the base space L, and note that the restriction maps produce a persistence module

S (τ0)
S (τ0≤τ1)

// S (τ1)
S (τ1≤τ2)

// · · ·
S (τn−1≤τn)

// S (τn).

It follows from the associativity axiom of Definition 7.1 that the number of intervals [i, j] in the
barcode of this persistence module must equal the rank of S (τi ≤ τj).

7.3 SHEAF COHOMOLOGY

Taking the perspective of sheaves as algebraic weights on simplices seriously produces a suite of
new cohomology theories for simplicial complexes. To define these sheaf-infused cohomology
groups, we must first build a suitable cochain complex using the data of a sheaf; to this end, fix
a sheaf S on a simplicial complex L.

DEFINITION 7.5. For each dimension k ≥ 0, the vector space of k-cochains of L with S -
coefficients is the product

Ck(L; S ) = ∏
dim τ=k

S (τ)

of the stalks of S over all the k-dimensional simplices of L.

Depending on which sheaf S is being used as the coefficient system in the definition above, the
cochain groups C•(L; S ) might be quite different from the familiar simplicial cochain groups
C•(L; F) of Definition 5.1 — for instance, when S = 0L, we obtain trivial cochain groups in all
dimensions regardless of L. But for S = FL, we recover the usual simplicial cochain groups of
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L. The key point is that while the constant sheaf identifies a unique one-dimensional subspace of
Ck(L) with every k-simplex of L, using a different sheaf S allows us to upgrade the contribution
of some simplices (by assigning them stalks of dimension > 1) and diminishing the contribution
of others (by assigning them zero stalks).

Let’s assume that the vertices of L are ordered so that each k-simplex τ has a well-defined i-th
face τ−i for i in {0, . . . , k} (see Definition 3.4). For each pair of simplices τ, τ′ in L we write

[τ : τ′] :=


+1 τ = τ′−i for i even,
−1 τ = τ′−i for i odd,
0 otherwise.

Thus, [τ : τ′] ∈ F is precisely the coefficient of τ′ in the simplicial coboundary of τ, or equiva-
lently, the coefficient of τ in the simplicial boundary of τ′.

DEFINITION 7.6. For each k ≥ 0, the k-th coboundary map of L with S -coefficients is the
linear map

∂k
S : Ck(L; S )→ Ck+1(L; S )

defined via the following block-action: for each pair of simplices τ ≤ τ′ with dim τ = k and
dim τ′ = k + 1, the S (τ)→ S (τ′) component of ∂k

S is given by

∂k
S |τ,τ′ = [τ : τ′] ·S (τ ≤ τ′) (6)

From a computational perspective, it often helps to view ∂k
S as an enormous block-matrix whose

columns are indexed by (stalks of) all the k-simplices in L and rows are indexed by (stalks of) all
the (k + 1)-simplices; the component ∂k

S |τ,τ′ is the block in the column of τ and the row of τ′:

The expression (6) for ∂k
S |τ,τ′ involves a restriction map, but note that it makes sense even when

τ is not a face of τ′: in this case, the scalar [τ : τ′] is zero, so the entire block is zero.

REMARK 7.7. If S is the constant sheaf FL, then all the rows and columns have width one
(since all the stalks are one-dimensional); and since the restriction maps in this case are all
identities, the entry ∂k

S |τ,τ′ lies in {0,±1} depending on whether or not τ is a face of τ′. Thus,
both Ck(L; S ) and ∂k

S reduce to the familiar objects from Definition 5.1 when S = FL.

The harsh constraints placed on restriction maps of S by the associativity axiom of Defini-
tion 7.1 will now start yielding rich dividends. The following result establishes that the choice
of terminology (cochains and coboundary operators) for the objects Ck(L; S ) and ∂k

S is appo-
site.
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PROPOSITION 7.8. The sequence

0 // C0(L; S )
∂0
S
// C1(L; S )

∂1
S
// · · ·

∂k−1
S
// Ck(L; S )

∂k
S
// Ck+1(L; S )

∂k+1
S
// · · ·

forms a cochain complex over F. In other words, ∂k
S ◦ ∂k−1

S equals zero for all k ≥ 1.

PROOF. It suffices to verify that the composite of two adjacent coboundary operators equals
zero block-wise. Namely, for each (k− 1)-simplex τ and (k + 1)-simplex τ′′ we will show that
the F (τ) → F (τ′′) block of this composite is the zero map, from which the desired conclusion
immediately follows. For any vector v in F (τ), we calculate

∂k
S ◦ ∂k−1

S (v) = ∑
dim τ′=k

∂k
S |τ′,τ′′ ◦ ∂k−1

S |τ,τ′(v) by Definition 7.6

= ∑
τ<τ′<τ′′

∂k
S |τ′,τ′′ ◦ ∂k−1

S |τ,τ′(v) eliminating zero terms

= ∑
τ<τ′<τ′′

[τ′ : τ′′] · [τ : τ′] ·S (τ′ ≤ τ′′) ◦S (τ ≤ τ′)(v) by (6)

= ∑
τ<τ′<τ′′

[τ′ : τ′′] · [τ : τ′] ·S (τ ≤ τ′′)(v) associativity axiom!

=

(
∑

τ<τ′<τ′′
[τ′ : τ′′] · [τ : τ′]

)
·S (τ ≤ τ′′)(v) collecting scalars

But now the scalar in parentheses is zero because it equals the coefficient of τ′′ in the composite
∂k

L ◦ ∂k−1
L (τ). Since our choice of v was arbitrary, the composite ∂k

S ◦ ∂k−1
S is identically zero as

desired. �

Having produced a cochain complex from S , we can safely define the associated cohomology
groups in the usual fashion.

DEFINITION 7.9. For each dimension k ≥ 0, the k-th cohomology group of L with coeffi-
cients in S is the quotient vector space

Hk(L; S ) = ker ∂k
S/img ∂k−1

S .

At the moment, this definition is simply a way of producing cohomology groups from sheaves.
We know, based on the discussion above, that this sheaf cohomology agrees with standard coho-
mology whenever S is the constant sheaf FL. It is challenging to visualize sheaf cohomology for
more general choices of S ; but in the next Section, we will provide a topological interpretation
for the simplest sheaf cohomology group H0(L; S ) for arbitrary S .

7.4 THE ÉTALE SPACE AND SECTIONS

Let L be a simplicial complex and S a sheaf on L; both will remain fixed throughout this
section. We recall that the geometric realization of every simplex τ in L is denoted |τ| ⊂ |L| (see
Definition 1.7) and its open star (from Definition 1.17) is denoted st(τ) ⊂ L. The realization of
this open star is

| st(τ)| =
⋃

τ≤τ′
|τ′|◦,
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where |τ′|◦ stands for the interior of |τ′| in |L|. For each x ∈ |L| there is a unique simplex τ ∈ L
with x ∈ |τ|◦, which we will denote by τx throughout this section.

DEFINITION 7.10. The étale space of a sheaf S on L is the topological space ES defined as
follows. Its underlying set consists of pairs

ES = {(x, v) | v ∈ S (τx)} .

A basis for the topology is prescribed by open sets Uτ,v ⊂ ES indexed by pairs (τ, v) where
τ ∈ L is a simplex and v ∈ S (τ) is a vector lying in its stalk. Each such basic open set is:

Uτ,v = {(x, w) | τx ≥ τ and w = S (τ ≤ τx)(v)} .

There is a natural projection πS : ES � |L| sending each (x, v) to x; this is called the étale
map of S and it satisfies two strong properties. First, its restriction to each basic open Uτ,v is a
homeomorphism onto | st(τ)|. And second, for each x in L we have

π−1
S (x) = {x} ×S (τx).

Thus, π−1
S (x) has the structure of a vector space for each x in |L|. The étale space is is home to

some very special subspaces; these can be discovered by attempting to find right-inverses for
the affiliated étale map.

DEFINITION 7.11. Let L′ ⊂ L be any subcollection of simplices (which do not necessarily
form a subcomplex). A section of S over L′ is any continuous map h : |L′| → ES for which
the composite πS ◦ h equals the identity map on |L′|. The set of all such sections is denoted
Γ(L′; S ).

The case L = L′ is of particular interest — we call Γ(L; S ) the set of global sections of S . Since
any section h in Γ(L′, S ) satisfies πS ◦ h = id, it must at least send each point x of |L′| to a vector
h(x) in the stalk S (τx). Since h is also continuous, we can make two stronger claims.

PROPOSITION 7.12. For any subcollection L′ ⊂ L of simplices,
(1) each section h in Γ(L′; S ) is constant on |τ|◦ for each τ in L′; moreover,
(2) the set Γ(L′; S ) has the structure of a vector space.

PROOF. Fix any simplex τ in L′. Since πS ◦ h is the identity, it follows that h(| st(τ)|) is a
subset of π−1

S (| st(τ)|). By definition, there is a decomposition

π−1
S (| st(τ)|) ' ä

v∈S (τ)

Uτ,v,

where each Uτ,v is a basic open set. Since h is continuous and | st(τ)| is connected, there is a
single v in S (τ) so that h(| st(τ)|) ⊂ Uτ,v. Thus, any two points x and x′ in |τ|◦ are sent by h to
the same vector S (τ ≤ τ)(v) = v, which proves the first claim. Armed with this knowledge,
we may as well view h as a function sending each simplex τ ∈ L′ to a vector h(τ) ∈ S (τ). With
this shift in perspective, the vector space structure on Γ(L′; S ) becomes obvious: for any pair
of scalars α, β in F and sections h, g in Γ(L′; S ), we can form the linear combination α · h + β · g
that sends each τ to the vector α · h(τ) + β · g(τ) in S (τ). �

Writing sections as assignments of stalk-vectors to simplices of L′ (rather than to points of
|L′|) allows us to view them as finite objects. Implicit in the proof of the above result is the
following observation, which establishes that sections correspond to choices of stalk-vectors that
are compatible with respect to the restriction maps of S .
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COROLLARY 7.13. If h is a section in Γ(L′, S ), then for every pair of simplices τ ≤ τ′ in L′ we
have the equality

S (τ ≤ τ′)(h(τ)) = h(τ′).

We have been discussing sections of sheaves because they are intimately related to the sheaf
cohomology groups from Definition 7.9.

THEOREM 7.14. For any sheaf S over a simplicial complex L, there is a vector space isomorphism

H0(L; S ) ' Γ(L; S )

between the zeroth cohomology groups of L with coefficients in S and the global sections of S .

PROOF. Although this proof has been assigned as an exercise, we show the first step of the
argument here as a (substantial) hint. The zeroth cohomology H0(L; S ) is precisely the kernel
of the coboundary map ∂0

S , whose block structure has been described in Definition 7.6. The
row-blocks are indexed by the 1-simplices, each of which contains exactly two vertices in its
boundary. The row corresponding to a 1-simplex τ = (u0, u1) can only have nonzero blocks in
the two columns corresponding to its vertices u0 and u1. Thus, a cochain v in C0(L; S ) lies in the
kernel of this coboundary matrix if and only if its components vi ∈ S (ui) for i in {0, 1} satisfy

S (u0 ≤ τ)(v0) = S (u1 ≤ τ)(v1).

This is the first step in showing that v constitutes a section. �

REMARK 7.15. When defining sections of S over subsets of L, we only used the topology of
ES and properties of the map πS : ES � |L|. In fact, one can completely recover S from its
étale map: the stalk S (τ) over each simplex τ of L is the vector space of sections Γ(| st(τ)|; S )
over its open star, and the restriction map associated to τ ≤ τ′ is obtained by using the fact
that every section | st(τ)| → ES restricts to a section over the smaller set | st(τ′)|.

7.5 PUSHFORWARDS AND PULLBACKS

There is a natural way to define maps of sheaves over a fixed simplicial complex L.

DEFINITION 7.16. A morphism of sheaves Φ• : S → S ′ over L consists of linear maps
Φτ : S (τ)→ S ′(τ) indexed by simplices τ ∈ L so that the following diagram of vector spaces
commutes for each τ ≤ τ′:

S (τ)

S (τ≤τ′)
��

Φτ
// S ′(τ)

S ′(τ≤τ′)
��

S (τ′)
Φτ′

// S ′(τ′).

These morphisms endow the set of all sheaves over L with the structure of a category, which we
will denote by Sh(L). Sheaf morphisms induce well-defined maps on sheaf cohomology (this is
an exercise to this Chapter).
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Our goal here is to show how sheaves can be transported back and forth between a pair of
simplicial complexes K and L by using a simplicial map f : K → L. Surprisingly, the easier direc-
tion is backwards: we can construct a sheaf on K from a sheaf on L in a relatively straightforward
manner.

DEFINITION 7.17. The pullback of a sheaf S over L across the simplicial map f : K → L is a
new sheaf f ∗S over K defined as follows. The stalk over every simplex σ in K is

f ∗S (σ) = S ( f (σ)),

while the restriction map for σ ≤ σ′ is

f ∗S (σ ≤ σ′) = S ( f (σ) ≤ f (σ′))

Transporting sheaves from K forwards to L along f : K → L is more intricate, because now
the direction of f works against us. For each simplex τ of L, there might be a large collection of
simplices in K which get mapped to (a co-face of) τ; we must somehow combine the T -stalks
over all these simplices in order to produce a sheaf over K. Here it helps to utilize the perspective
from Remark 7.15 and define the desired sheaf in terms of its étale space.

DEFINITION 7.18. The pushforward of a sheaf T on K along a simplicial map f : K → L is a
new sheaf f∗T on L whose étale space equals

E f∗T =
{(
| f |(x), v

)
| (x, v) ∈ ET

}
;

here | f | : |K| → |L| is the continuous map induced by f .

By our recipe for extracting sheaves from their étale spaces, it follows that the stalk f∗T (τ) for
each simplex τ of L is the vector space of sections Γ(| f /τ|; T ), where f /τ is the dual fiber

f /τ = {σ ∈ K | f (σ) ≥ τ} .

Although this dual fiber is not generally a subcomplex of K unlike τ/ f , the space of T ’s sections
over it is still well-defined.

REMARK 7.19. Pullbacks and pushforwards are functors between Sh(K) and Sh(L) — so,
we can pull and push not only sheaves but also their morphisms. Moreover, they form a dual
adjoint pair in the following sense. Given a simplicial map f : K → L along with sheaves
S ∈ Sh(L) and T ∈ Sh(K), there is a bijectionMorphisms

f ∗S → T
in Sh(K)

 '
Morphisms

S → f∗T
in Sh(L)


To prove this, one must first discover natural sheaf morphisms

S → f∗ f ∗S and f ∗ f∗T → T

in Sh(L) and Sh(K) respectively. The best way to become familiar with pushforwards and
pullbacks is to find these morphisms on your own and use them to establish this bijection.

7.6 BONUS: COSHEAVES

Sheaves come with a cohomology theory because of the directions of their restriction maps,
which point from low-dimensional simplices to high-dimensional ones. In order to produce
an equal and opposite homology theory, one requires maps going in the other direction; this is
achieved by reversing the partial order on the simplices of the base space L.
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DEFINITION 7.20. A cosheaf over L is a functor C : (L,≥)→ VectF.

Thus, C assigns an F-vector space C (τ) (called the costalk) to each simplex τ of L; and it assigns
a a linear map S (τ ≥ τ′) : S (τ) → S (τ′) (called the extension map) to each coface relation
τ ≥ τ′ in L. Moreover, we require the expected axioms to hold:

(1) the map C (τ ≥ τ) is the identity on C (τ), and
(2) the equality C (τ′ ≥ τ′′) ◦ C (τ ≥ τ′) = C (τ ≥ τ′′) holds for every triple of simplices

τ ≥ τ′ ≥ τ′′.

All of the constructions and results which have been described for sheaves in this Chapter also
admit cosheafy analogues — for instance, every cosheaf C on L induces a chain complex

· · ·
∂C

k+1
// Ck(L; C )

∂C
k
// Ck−1(L; C )

∂C
k−1
// · · ·

∂C
2
// C1(L; C )

∂C
1
// C0(L; C ) // 0

which gives rise to the homology of L with coefficients in C . Similarly, there are dual notions
of étale spaces, pushforwards and pullbacks for cosheaves.

EXERCISES

EXERCISE 7.1. Given two monotone functions f , f ′ : K → R on a simplicial complex K,
assume there exists some ε > 0 so that | f (σ) − f ′(σ)| < ε holds for every simplex σ of K.
Letting F• and F ′• denote the sublevelset filtrations of K with respect to f and f ′ respectively,
show that the barcodes of Hk(F•K) and Hk(F ′•K) have bottleneck distance at most ε for every
k ≥ 0. [Hint: find an ε interleaving of the two persistence modules and use Theorem 6.19]

EXERCISE 7.2. Describe the stalks and restriction maps of the fiber homology sheaves F k
f

for k ≥ 0 when f is the inclusion ∂∆(k) ↪→ ∆(k).

EXERCISE 7.3. Let L be a simplicial complex and τ a simplex in L of dimension k ≥ 0. What
are the cohomology groups of L with coefficients in the skyscraper sheaf Skτ?

EXERCISE 7.4. Let f : ∂∆(2) ↪→ ∆(2) be the inclusion map and F k
f the associated fiber

homology sheaf for each k ≥ 0. Compute the cohomology groups Hi(∆(2), F j
f ) for all four

pairs 0 ≤ i, j ≤ 1.

EXERCISE 7.5. Find a sheaf S on a contractible simplicial complex L for which H1(L; S ) is
nonzero.

EXERCISE 7.6. Show how Corollary 7.13 follows from the argument which was used to
prove Proposition 7.12.

EXERCISE 7.7. Show that every morphism Φ : S → S ′ of sheaves over a simplicial com-
plex L induces well-defined linear maps Hk(L; S )→ Hk(L; S ′) of sheaf cohomology groups.

EXERCISE 7.8. Show that the pullback f ∗S of a sheaf over L across a simplicial map f :
K → L is a sheaf over K
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EXERCISE 7.9. Complete the proof of Theorem 7.14.

EXERCISE 7.10. Show that for every simplicial map f : K → L and each dimension k ≥ 0,
the assignment of fiberwise cohomology groups τ 7→ Hk(τ/ f ) constitutes a cosheaf over L.


