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7.1 FIBERS AND PERSISTENCE

Let f : K — R be a function that assigns a non-negative

real number f (o) to every simplex ¢ of a simplicial complex o
K. We call f monotone if it satisfies f(c) < f(t) whenever
o is a face of 7 in K. Specifying a monotone f is equivalent
to imposing an R -indexed filtration F, on K — to discover
this filtration, one uses the rule FEK = {c € K| f(0) < t}.
We call F the sublevelset filtration of K with respect to f.
Conversely, if we are given a filtration F, of K, then the cor- ‘
responding monotone function f : K — R, is given by < <‘7'3757'2
f(o) =inf{t € Ry | o € FK}. Thus, much of persistent ho- 6\W
mology (particularly its application to the study of filtered
simplicial complexes) can be interpreted as the systematic analysis of homology groups associ-
ated to certain fibers of f — for each + € R™, the fiber of interest is a subcomplex of K:

{f<t}:={oceK[0< f(o) <t}

Thanks to the finiteness of K, taking the k-th homology of sublevelset filtrations always pro-
duces tame persistence modules (in the sense of Definition 6.13); thus these modules admit a
barcode decomposition as guaranteed by Corollary 6.14. These barcodes satisfy two special
properties: first, they allow us to combinatorially describe the homology of each fiber {f < t}
and the rank of the linear maps

pey

[ A

=

4

Hy({f <t}) > He({f <s})

induced on k-th homology by inclusion of fibers for all pairs t < s. Second, if we have a another
monotone function f’ : K — R that is e-close to our f, i.e., if we have

|f(0) — f'(0)] < € for every rin K,

then the barcodes for f’ will be no more than e-apart from those of f with respect to the bot-
tleneck distance (see Definition 6.18 and Exercise 7.1). Thus, all intervals longer than 2¢ in the
barcode of f correspond to fiber homology classes that are stable with respect to e-perturbations
of f.

Card-carrying mathematicians will immediately wonder whether similar stability results can
be obtained for maps K — X when X is more complicated than R : ars gratia artis. Those with
the ability to withstand this temptation to generalize might instead be compelled by more practi-
cal considerations. A monotone map f : K — IR associates a (real-valued) measurement to each
simplex, and we are often interested in several such measurements {f;: K - Ry |1 <i < n}
and wish to study (the homology of) their common sublevelsets (' ; { f; < t;} simultaneously.

Thus, we may as well assign
o (fi(o),..., fu(0))

and study the fibers of this single vector-valued map K — R’}..

Even more interesting from a topological viewpoint is the scenario where the f; associate
angles in [0,277) to simplices; in this case, we have a map f : K — T" to the n-torus (i.e., the
product of 7 circles). Now it no longer makes sense to seek monotonicity or ask about fibers of
the form {f; < t;}, since there is no natural partial order on points of the n-torus. On the other
hand, we can certainly triangulate the torus so that f becomes a simplicial map and study the
fiberwise homology of f over simplices (or subcomplexes) of T". It is, therefore, in our interest
to understand the (co)homology groups of fibers of simplicial maps f : K — L. The optimal data
structure which coherently organizes these fiber homology groups is called a sheaf.
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7.2 SHEAVES

Let L be a simplicial complex and F a field. We write (L, <) to denote the poset of simplices
in L ordered by the face relation.

DEFINITION 7.1. A sheaf over L is a functor . : (L, <) — Vectg. In other words, .7 assigns

(1) to each simplex 7 of L an [F-vector space .#(7) called the stalk, and
(2) toeach 7 < 7/in L a linear map ./ (7t < 7') : S (1) — #(7') called the restriction map,

subject to the usual (identity and associativity) categorical axioms:

(1) for every simplex 7 in L, the map .7 (T < 7) is the identity on . (1), and
(2) forevery triple 1 < v/ < t”in L, we have (7' < ") o S (t < 1) = F(t < ).

We call L the base space of the sheaf .. From a

purely algebraic perspective, ./ is an arrangement of S lee

[F-vector spaces and linear maps parametrized by the 5{‘6 ) ———— G ao (T
simplices of L and their face relations. Alternately, ‘

one may view . as a gadget which weights these V (sT) / s
simplices and face relations by vector spaces and lin- Qa(-c\ ao (’5 (G2

ear maps respectively. Although the stalks of a sheaf S (TeT)

can vary drastically from simplex to simplex, the as- < =P
sociativity requirement places severe constraints on Co 4‘/
T,

restriction maps. For instance, both composite paths
from (1) to (7”) in the accompanying figure
must evaluate to .(7 < 7”). On the other hand,
if L is one-dimensional then associativity holds automatically because there are no ascending
triples T < 7/ < 7" of simplices.

EXAMPLE 7.2. Here are three examples of sheaves on a simplicial complex L, in increasing
order of complexity.

(1) The zero sheaf 0;, as suggested by its name, assigns the trivial (i.e., zero-dimensional)
[F-vector space to every simplex. This forces all the restriction maps to also be zero.

(2) Given a simplex T of L, the associated skyscraper sheaf Sk, over L assigns the triv-
ial vector space to every simplex except T, whose stalk is the one-dimensional vector
space FF. The restriction map associated to T < 7 is the identity, while all other restric-
tion maps must be zero.

(3) The constant sheaf [F; assigns the one-dimensional stalk [F to every simplex of L and
the identity restriction map IF — IF to every face relation in sight.

More interesting examples will become available later.

As mentioned in the previous Section, our main interest in sheaves comes from their remark-
able ability to encode the homology groups of fibers of simplicial maps. Recall from (2) that the
tiber of a simplicial map f : K — L under a simplex T of L is the subcomplex of K given by

t/f = {0 €K| flo) < T}

And moreover, for any pair T < 7’ in L there is an obvious inclusion of fibers 7/f — *'/f
because any ¢ in K satisfying f(0) < T automatically satisfies f(c) < 7. Thus, fitting the
homology groups Hy(t/ f;F) into a sheaf over L becomes a matter of invoking the functoriality
of homology with respect to inclusion maps.
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PROPOSITION 7.3. Let f : K — L be a simplicial map. For each dimension k > 0, the assignments
T — Hi(t/f), and
(t<t)—=Hi(t/f = T/f)
constitute a sheaf over L, which we denote .7 J’S and call the k-th fiber homology sheaf of f.

The proof is not complicated — for any triple of simplices T < v < 7" in L, the inclusion
T/f — T"/f factors through 7’/ f; the identity and associativity axioms of Definition 7.1 are
satisfied simply because homology is functorial. It should also be noted that in general some

fiber T/ f might be empty, in which case we would have .7 ]’f (t) =Hi(t/f) =0forall k.

EXAMPLE 7.4. Fiber homology sheaves of the identity simplicial mapid : L — L are already
familiar to us — for each simplex 7 of L, the fiber 7/id is the subcomplex T consisting of the
single simplex T along with all of its faces. Each such fiber is contractible by Proposition 2.6,
and hence has the homology of a point A(0). Consequently,

F k=0

Thus, fl’a is the zero sheaf 0; whenever k > 0. With a bit of effort, one can discover that the
restriction maps of .7, are all identities F — I, and so .%_) is the constant sheaf IF; .

Those experiencing nostalgia for persistent homology have no cause for concern: every sheaf
< is filled to the brim with persistence modules. Take any ascending sequence

=T <" =Ty
of simplices in the base space L, and note that the restriction maps produce a persistence module

S (1<1) S (m<n) S (Ty—1<Tu)

L () ——— (1) L (Ty)-

It follows from the associativity axiom of Definition 7.1 that the number of intervals [i, j| in the
barcode of this persistence module must equal the rank of . (7; < 7).

7.3 SHEAF COHOMOLOGY

Taking the perspective of sheaves as algebraic weights on simplices seriously produces a suite of
new cohomology theories for simplicial complexes. To define these sheaf-infused cohomology
groups, we must first build a suitable cochain complex using the data of a sheaf; to this end, fix
a sheaf . on a simplicial complex L.

DEFINITION 7.5. For each dimension k > 0, the vector space of k-cochains of L with .7-
coefficients is the product
L) =] 7 )
dim t=k
of the stalks of .7 over all the k-dimensional simplices of L.

Depending on which sheaf .7 is being used as the coefficient system in the definition above, the
cochain groups C*(L;.”) might be quite different from the familiar simplicial cochain groups
C*(L; F) of Definition 5.1 — for instance, when . = 0;, we obtain trivial cochain groups in all
dimensions regardless of L. But for . = [F;, we recover the usual simplicial cochain groups of
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L. The key point is that while the constant sheaf identifies a unique one-dimensional subspace of

C*(L) with every k-simplex of L, using a different sheaf .7 allows us to upgrade the contribution
of some simplices (by assigning them stalks of dimension > 1) and diminishing the contribution
of others (by assigning them zero stalks).

Let’s assume that the vertices of L are ordered so that each k-simplex T has a well-defined i-th
face T_; foriin {0,...,k} (see Definition 3.4). For each pair of simplices 7, 7’ in L we write

+1 7 =1, forieven,
[T:7]:=< -1 7=1_foriodd,
0 otherwise.

Thus, [t : T'] € F is precisely the coefficient of 7/ in the simplicial coboundary of 7, or equiva-
lently, the coefficient of T in the simplicial boundary of 7’

DEFINITION 7.6. For each k > 0, the k-th coboundary map of L with .”-coefficients is the
linear map

ok, . CHL;,.7) — CHY(L;.)
defined via the following block-action: for each pair of simplices T < 7’ with dimt = k and
dim v’ = k+ 1, the /(1) — .7 (') component of d*, is given by

o ep =[r: 7] F(r <) (6)

From a computational perspective, it often helps to view 9%, as an enormous block-matrix whose
columns are indexed by (stalks of) all the k-simplices in L and rows are indexed by (stalks of) all

the (k + 1)-simplices; the component 9%, |, .+ is the block in the column of T and the row of 7’
p P 7T,

T

The expression (6) for 8’} |z v involves a restriction map, but note that it makes sense even when
T is not a face of 7’: in this case, the scalar [t : '] is zero, so the entire block is zero.

REMARK 7.7. If . is the constant sheaf [F;, then all the rows and columns have width one
(since all the stalks are one-dimensional); and since the restriction maps in this case are all
identities, the entry 0%, |, s lies in {0, =1} depending on whether or not 7 is a face of 7’. Thus,

both C¥(L;.#) and &, reduce to the familiar objects from Definition 5.1 when .’ = [F; .

The harsh constraints placed on restriction maps of .” by the associativity axiom of Defini-
tion 7.1 will now start yielding rich dividends. The following result establishes that the choice

of terminology (cochains and coboundary operators) for the objects C*(L;.#) and %, is appo-
site.
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PROPOSITION 7.8. The sequence

k—1 a{;ﬂ k+1

3 ol 9
0—CL;,») L cl(L,.y) L L iy L YL y) 2L

forms a cochain complex over IF. In other words, 9, o 8’;; Y equals zero for all k > 1.

PROOF. It suffices to verify that the composite of two adjacent coboundary operators equals
zero block-wise. Namely, for each (k — 1)-simplex T and (k + 1)-simplex 7”7 we will show that
the .Z (1) — Z(1") block of this composite is the zero map, from which the desired conclusion
immediately follows. For any vector v in .% (T), we calculate

o, o 85‘5;1 (v)= ) |t g 0 af;;l |t () by Definition 7.6
dim v'=k
= ) ok, [ a’; Yo (v) eliminating zero terms
T<t'<t”
= ) [T [r:7] LT <) oS (T < T)(0) by (6)
T<t'<t”
= ) [T v Lt < )(0) associativity axiom!
T<t'<t”
= ( Yo [t T T’]) - (t <) (v) collecting scalars
T<t'<t”

But now the scalar in parentheses is zero because it equals the coefficient of T/ in the composite

ok o 8’2_1 (7). Since our choice of v was arbitrary, the composite 8’;, o 8{; ! is identically zero as
desired. 0

Having produced a cochain complex from ., we can safely define the associated cohomology
groups in the usual fashion.

DEFINITION 7.9. For each dimension k > 0, the k-th cohomology group of L with coeffi-
cients in . is the quotient vector space

HN(L;.7) = kera]fy/imgalgl.

At the moment, this definition is simply a way of producing cohomology groups from sheaves.
We know, based on the discussion above, that this sheaf cohomology agrees with standard coho-
mology whenever .7 is the constant sheaf [F; . It is challenging to visualize sheaf cohomology for
more general choices of .#; but in the next Section, we will provide a topological interpretation
for the simplest sheaf cohomology group H°(L;.#) for arbitrary .7

7.4 THE ETALE SPACE AND SECTIONS

Let L be a simplicial complex and .7 a sheaf on L; both will remain fixed throughout this
section. We recall that the geometric realization of every simplex 7 in L is denoted |t| C |L| (see
Definition 1.7) and its open star (from Definition 1.17) is denoted st(7) C L. The realization of
this open star is

st(r)l = U 7",

<t/
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where |T'|° stands for the interior of |7’| in |L|. For each x € |L| there is a unique simplex T € L
with x € |7]°, which we will denote by 7, throughout this section.

DEFINITION 7.10. The étale space of a sheaf .7 on L is the topological space E.” defined as
follows. Its underlying set consists of pairs

EY ={(x,v) |ve ()}

A basis for the topology is prescribed by open sets U, C E.# indexed by pairs (t,v) where
T € Lis asimplex and v € .(7) is a vector lying in its stalk. Each such basic open set is:

Ury = {(x,w) | tx > Tand w = /(7 < 7o) (v) } .

There is a natural projection 7wy : E¥ — |L| sending each (x,v) to x; this is called the étale
map of .’ and it satisfies two strong properties. First, its restriction to each basic open Uz is a
homeomorphism onto | st(7)|. And second, for each x in L we have

n;}(x) = {x} X L (1a).

Thus, 77,/ (x) has the structure of a vector space for each x in |L|. The étale space is is home to
some very special subspaces; these can be discovered by attempting to find right-inverses for
the affiliated étale map.

DEFINITION 7.11. Let L’ C L be any subcollection of simplices (which do not necessarily
form a subcomplex). A section of . over L' is any continuous map # : [L'| — E.% for which

the composite 71 o h equals the identity map on |L'|. The set of all such sections is denoted
I[(L;.7).

The case L = L' is of particular interest — we call I'(L;.%”) the set of global sections of .. Since
any section hinT'(L',.7) satisfies 71~ o h = id, it must at least send each point x of |L’| to a vector
h(x) in the stalk . (7y). Since  is also continuous, we can make two stronger claims.

PROPOSITION 7.12. For any subcollection L' C L of simplices,

(1) each section hin T(L';.7) is constant on |t|° for each T in L'; moreover,
(2) the set T'(L';.”) has the structure of a vector space.

PROOF. Fix any simplex T in L'. Since 7o o h is the identity, it follows that k(| st(7)|) is a
subset of 7'[}1 (| st(T)|). By definition, there is a decomposition

w5 (Ist(0)]) = [ ] ?T’v'

ves (T

where each Uz is a basic open set. Since & is continuous and | st(7)| is connected, there is a
single v in . (7) so that (| st(7)|) C Ury. Thus, any two points x and x’ in |7|° are sent by & to
the same vector .’ (7 < 7)(v) = v, which proves the first claim. Armed with this knowledge,
we may as well view £ as a function sending each simplex T € L’ to a vector k(1) € .7 (7). With
this shift in perspective, the vector space structure on I'(L’; .#’) becomes obvious: for any pair
of scalars «, B in [F and sections &, ¢ in T'(L’;.7), we can form the linear combinationa - h+ - g
that sends each 7 to the vector a - h(7) + - g(7) in .7 (7). O

Writing sections as assignments of stalk-vectors to simplices of L (rather than to points of
|L’|) allows us to view them as finite objects. Implicit in the proof of the above result is the
following observation, which establishes that sections correspond to choices of stalk-vectors that
are compatible with respect to the restriction maps of ..
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COROLLARY 7.13. If h is a section in T(L',.”), then for every pair of simplices T < T’ in L' we
have the equality

(< T)(h(1)) = h(7").

We have been discussing sections of sheaves because they are intimately related to the sheaf
cohomology groups from Definition 7.9.

THEOREM 7.14. For any sheaf . over a simplicial complex L, there is a vector space isomorphism
HY(L; ) ~T(L; %)
between the zeroth cohomology groups of L with coefficients in . and the global sections of ..

PROOF. Although this proof has been assigned as an exercise, we show the first step of the
argument here as a (substantial) hint. The zeroth cohomology H’(L;.#) is precisely the kernel
of the coboundary map 9%, whose block structure has been described in Definition 7.6. The
row-blocks are indexed by the 1-simplices, each of which contains exactly two vertices in its
boundary. The row corresponding to a 1-simplex T = (up, 1) can only have nonzero blocks in
the two columns corresponding to its vertices 1y and 1. Thus, a cochain v in C°(L;.¥) lies in the
kernel of this coboundary matrix if and only if its components v; € .7 (u;) for i in {0,1} satisfy

L (ug < 1)(v9) = (1 < 1)(07).

This is the first step in showing that v constitutes a section. O]

REMARK 7.15. When defining sections of .’ over subsets of L, we only used the topology of
E. and properties of the map 7 : E¥ — |L|. In fact, one can completely recover . from its
étale map: the stalk .7 (7) over each simplex T of L is the vector space of sections I'(| st(7)[;.)
over its open star, and the restriction map associated to T < 7’ is obtained by using the fact
that every section | st(7)| — E. restricts to a section over the smaller set | st(7’)].

7.5 PUSHFORWARDS AND PULLBACKS

There is a natural way to define maps of sheaves over a fixed simplicial complex L.

DEFINITION 7.16. A morphism of sheaves ®, : .¥ — .%’ over L consists of linear maps
d,: (1) = (1) indexed by simplices T € L so that the following diagram of vector spaces
commutes for each v < 7':

5’(’[<T/)l lj”(r<r’)

Y(T’)—/>Y’(T’).

These morphisms endow the set of all sheaves over L with the structure of a category, which we
will denote by Sh(L). Sheaf morphisms induce well-defined maps on sheaf cohomology (this is
an exercise to this Chapter).
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Our goal here is to show how sheaves can be transported back and forth between a pair of
simplicial complexes K and L by using a simplicial map f : K — L. Surprisingly, the easier direc-
tion is backwards: we can construct a sheaf on K from a sheaf on L in a relatively straightforward
manner.

DEFINITION 7.17. The pullback of a sheaf .” over L across the simplicial map f : K — Lisa
new sheaf f*.7 over K defined as follows. The stalk over every simplex ¢ in K is

f#(0) = Z(f(0)),

while the restriction map for o < ¢’ is
frslo <o) =7(f(o) < f(e))

Transporting sheaves from K forwards to L along f : K — L is more intricate, because now
the direction of f works against us. For each simplex T of L, there might be a large collection of
simplices in K which get mapped to (a co-face of) T; we must somehow combine the .7 -stalks
over all these simplices in order to produce a sheaf over K. Here it helps to utilize the perspective
from Remark 7.15 and define the desired sheaf in terms of its étale space.

DEFINITION 7.18. The pushforward of a sheaf .7 on K along a simplicial map f : K — Lis a
new sheaf f..7 on L whose étale space equals

Ef.7 = {(IfI(x),0) | (x,0) € ET};
here |f| : |K| — |L| is the continuous map induced by f.

By our recipe for extracting sheaves from their étale spaces, it follows that the stalk f..7 (1) for
each simplex 7 of L is the vector space of sections I'(|f/7|; .7 ), where f /T is the dual fiber

flt={0eK|f(o) 21}
Although this dual fiber is not generally a subcomplex of K unlike 7/ f, the space of .7’s sections
over it is still well-defined.

REMARK 7.19. Pullbacks and pushforwards are functors between Sh(K) and Sh(L) — so,
we can pull and push not only sheaves but also their morphisms. Moreover, they form a dual
adjoint pair in the following sense. Given a simplicial map f : K — L along with sheaves

% € Sh(L) and 7 € Sh(K), there is a bijection

Morphisms Morphisms
' =T |~ | = T
in Sh(K) in Sh(L)

To prove this, one must first discover natural sheaf morphisms
S = fiff and T — T

in Sh(L) and Sh(K) respectively. The best way to become familiar with pushforwards and
pullbacks is to find these morphisms on your own and use them to establish this bijection.

7.6 BONUS: COSHEAVES

Sheaves come with a cohomology theory because of the directions of their restriction maps,
which point from low-dimensional simplices to high-dimensional ones. In order to produce
an equal and opposite homology theory, one requires maps going in the other direction; this is
achieved by reversing the partial order on the simplices of the base space L.
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DEFINITION 7.20. A cosheaf over L is a functor ¢ : (L, >) — Vectg.

Thus, ¢ assigns an F-vector space € (7) (called the costalk) to each simplex 7 of L; and it assigns
a a linear map (1t > ') : (1) — #(v') (called the extension map) to each coface relation
T > 7’ in L. Moreover, we require the expected axioms to hold:

(1) the map € (7 > 7) is the identity on ¢(7), and
(2) the equality €(t/ > ") o€ (t > ') = €(t > 7") holds for every triple of simplices
T>1 > 1.

All of the constructions and results which have been described for sheaves in this Chapter also
admit cosheafy analogues — for instance, every cosheaf % on L induces a chain complex

2 4 X €
I %1 %

)
T C(L;E) —— Gy (L)

€

o3
Ci(L;6) —— Co(L; 6) —— 0

which gives rise to the homology of L with coefficients in 4. Similarly, there are dual notions
of étale spaces, pushforwards and pullbacks for cosheaves.

EXERCISES

EXERCISE 7.1. Given two monotone functions f, f/ : K — R on a simplicial complex K,
assume there exists some € > 0 so that |f(c) — f/(¢)] < € holds for every simplex ¢ of K.
Letting F, and F, denote the sublevelset filtrations of K with respect to f and f’ respectively,
show that the barcodes of Hy(F,K) and Hy(F,K) have bottleneck distance at most € for every
k > 0. [Hint: find an € interleaving of the two persistence modules and use Theorem 6.19]

EXERCISE 7.2. Describe the stalks and restriction maps of the fiber homology sheaves .7 }‘
for k > 0 when f is the inclusion dA (k) — A(k).

EXERCISE 7.3. Let L be a simplicial complex and T a simplex in L of dimension k > 0. What
are the cohomology groups of L with coefficients in the skyscraper sheaf Sk, ?

EXERCISE 7.4. Let f : dA(2) — A(2) be the inclusion map and .% J’,‘ the associated fiber
homology sheaf for each k > 0. Compute the cohomology groups H'(A(2), & J]f) for all four
pairs 0 <i,j < 1.

EXERCISE 7.5. Find a sheaf .# on a contractible simplicial complex L for which H'(L;.#) is

nonzero.

EXERCISE 7.6. Show how Corollary 7.13 follows from the argument which was used to
prove Proposition 7.12.

EXERCISE 7.7. Show that every morphism @ : . — %’ of sheaves over a simplicial com-
plex L induces well-defined linear maps H*(L;.7) — H¥(L;.#”) of sheaf cohomology groups.

EXERCISE 7.8. Show that the pullback f*.# of a sheaf over L across a simplicial map f :
K — Lis a sheaf over K




7. BONUS: COSHEAVES 94

EXERCISE 7.9. Complete the proof of Theorem 7.14. |

EXERCISE 7.10. Show that for every simplicial map f : K — L and each dimension k > 0,
the assignment of fiberwise cohomology groups T — H*(T/ f) constitutes a cosheaf over L.



